Speaker-Invariant Training via Adversarial Learning

نویسندگان

  • Zhong Meng
  • Jinyu Li
  • Zhuo Chen
  • Yong Zhao
  • Vadim Mazalov
  • Yifan Gong
  • Biing-Hwang Juang
چکیده

We propose a novel adversarial multi-task learning scheme, aiming at actively curtailing the inter-talker feature variability while maximizing its senone discriminability so as to enhance the performance of a deep neural network (DNN) based ASR system. We call the scheme speaker-invariant training (SIT). In SIT, a DNN acoustic model and a speaker classifier network are jointly optimized to minimize the senone (tied triphone state) classification loss, and simultaneously mini-maximize the speaker classification loss. A speakerinvariant and senone-discriminative deep feature is learned through this adversarial multi-task learning. With SIT, a canonical DNN acoustic model with significantly reduced variance in its output probabilities is learned with no explicit speaker-independent (SI) transformations or speaker-specific representations used in training or testing. Evaluated on the CHiME-3 dataset, the SIT achieves 4.99% relative word error rate (WER) improvement over the conventional SI acoustic model. With additional unsupervised speaker adaptation, the speaker-adapted (SA) SIT model achieves 4.86% relative WER gain over the SA SI acoustic model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Representations for Noisy Speech Recognition

Modern automatic speech recognition (ASR) systems need to be robust under acoustic variability arising from environmental, speaker, channel, and recording conditions. Ensuring such robustness to variability is a challenge in modern day neural network-based ASR systems, especially when all types of variability are not seen during training. We attempt to address this problem by encouraging the ne...

متن کامل

Adversarial Network Bottleneck Features for Noise Robust Speaker Verification

In this paper, we propose a noise robust bottleneck feature representation which is generated by an adversarial network (AN). The AN includes two cascade connected networks, an encoding network (EN) and a discriminative network (DN). Melfrequency cepstral coefficients (MFCCs) of clean and noisy speech are used as input to the EN and the output of the EN is used as the noise robust feature. The ...

متن کامل

Adversarial Discriminative Heterogeneous Face Recognition

The gap between sensing patterns of different face modalities remains a challenging problem in heterogeneous face recognition (HFR). This paper proposes an adversarial discriminative feature learning framework to close the sensing gap via adversarial learning on both raw-pixel space and compact feature space. This framework integrates cross-spectral face hallucination and discriminative feature...

متن کامل

Improving Speaker-Independent Lipreading with Domain-Adversarial Training

We present a Lipreading system, i.e. a speech recognition system using only visual features, which uses domain-adversarial training for speaker independence. Domain-adversarial training is integrated into the optimization of a lipreader based on a stack of feedforward and LSTM (Long Short-Term Memory) recurrent neural networks, yielding an end-to-end trainable system which only requires a very ...

متن کامل

Unsupervised Domain Adaptation in Brain Lesion Segmentation with Adversarial Networks

Significant advances have been made towards building accurate automatic segmentation systems for a variety of biomedical applications using machine learning. However, the performance of these systems often degrades when they are applied on new data that differ from the training data, for example, due to variations in imaging protocols. Manually annotating new data for each test domain is not a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018